3.7.41 \(\int \frac {x^5}{(1-x^3)^{4/3} (1+x^3)} \, dx\) [641]

3.7.41.1 Optimal result
3.7.41.2 Mathematica [A] (verified)
3.7.41.3 Rubi [A] (verified)
3.7.41.4 Maple [A] (verified)
3.7.41.5 Fricas [B] (verification not implemented)
3.7.41.6 Sympy [F]
3.7.41.7 Maxima [A] (verification not implemented)
3.7.41.8 Giac [A] (verification not implemented)
3.7.41.9 Mupad [B] (verification not implemented)

3.7.41.1 Optimal result

Integrand size = 22, antiderivative size = 100 \[ \int \frac {x^5}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=\frac {1}{2 \sqrt [3]{1-x^3}}-\frac {\arctan \left (\frac {1+2^{2/3} \sqrt [3]{1-x^3}}{\sqrt {3}}\right )}{2 \sqrt [3]{2} \sqrt {3}}+\frac {\log \left (1+x^3\right )}{12 \sqrt [3]{2}}-\frac {\log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}} \]

output
1/2/(-x^3+1)^(1/3)+1/24*ln(x^3+1)*2^(2/3)-1/8*ln(2^(1/3)-(-x^3+1)^(1/3))*2 
^(2/3)-1/12*arctan(1/3*(1+2^(2/3)*(-x^3+1)^(1/3))*3^(1/2))*2^(2/3)*3^(1/2)
 
3.7.41.2 Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.26 \[ \int \frac {x^5}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=\frac {1}{24} \left (\frac {12}{\sqrt [3]{1-x^3}}-2\ 2^{2/3} \sqrt {3} \arctan \left (\frac {1+2^{2/3} \sqrt [3]{1-x^3}}{\sqrt {3}}\right )-2\ 2^{2/3} \log \left (-2+2^{2/3} \sqrt [3]{1-x^3}\right )+2^{2/3} \log \left (2+2^{2/3} \sqrt [3]{1-x^3}+\sqrt [3]{2} \left (1-x^3\right )^{2/3}\right )\right ) \]

input
Integrate[x^5/((1 - x^3)^(4/3)*(1 + x^3)),x]
 
output
(12/(1 - x^3)^(1/3) - 2*2^(2/3)*Sqrt[3]*ArcTan[(1 + 2^(2/3)*(1 - x^3)^(1/3 
))/Sqrt[3]] - 2*2^(2/3)*Log[-2 + 2^(2/3)*(1 - x^3)^(1/3)] + 2^(2/3)*Log[2 
+ 2^(2/3)*(1 - x^3)^(1/3) + 2^(1/3)*(1 - x^3)^(2/3)])/24
 
3.7.41.3 Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.07, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {948, 87, 67, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5}{\left (1-x^3\right )^{4/3} \left (x^3+1\right )} \, dx\)

\(\Big \downarrow \) 948

\(\displaystyle \frac {1}{3} \int \frac {x^3}{\left (1-x^3\right )^{4/3} \left (x^3+1\right )}dx^3\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {1}{3} \left (\frac {3}{2 \sqrt [3]{1-x^3}}-\frac {1}{2} \int \frac {1}{\sqrt [3]{1-x^3} \left (x^3+1\right )}dx^3\right )\)

\(\Big \downarrow \) 67

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {3 \int \frac {1}{\sqrt [3]{2}-\sqrt [3]{1-x^3}}d\sqrt [3]{1-x^3}}{2 \sqrt [3]{2}}-\frac {3}{2} \int \frac {1}{x^6+\sqrt [3]{2} \sqrt [3]{1-x^3}+2^{2/3}}d\sqrt [3]{1-x^3}+\frac {\log \left (x^3+1\right )}{2 \sqrt [3]{2}}\right )+\frac {3}{2 \sqrt [3]{1-x^3}}\right )\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (-\frac {3}{2} \int \frac {1}{x^6+\sqrt [3]{2} \sqrt [3]{1-x^3}+2^{2/3}}d\sqrt [3]{1-x^3}+\frac {\log \left (x^3+1\right )}{2 \sqrt [3]{2}}-\frac {3 \log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{2 \sqrt [3]{2}}\right )+\frac {3}{2 \sqrt [3]{1-x^3}}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {3 \int \frac {1}{-x^6-3}d\left (2^{2/3} \sqrt [3]{1-x^3}+1\right )}{\sqrt [3]{2}}+\frac {\log \left (x^3+1\right )}{2 \sqrt [3]{2}}-\frac {3 \log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{2 \sqrt [3]{2}}\right )+\frac {3}{2 \sqrt [3]{1-x^3}}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (-\frac {\sqrt {3} \arctan \left (\frac {2^{2/3} \sqrt [3]{1-x^3}+1}{\sqrt {3}}\right )}{\sqrt [3]{2}}+\frac {\log \left (x^3+1\right )}{2 \sqrt [3]{2}}-\frac {3 \log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{2 \sqrt [3]{2}}\right )+\frac {3}{2 \sqrt [3]{1-x^3}}\right )\)

input
Int[x^5/((1 - x^3)^(4/3)*(1 + x^3)),x]
 
output
(3/(2*(1 - x^3)^(1/3)) + (-((Sqrt[3]*ArcTan[(1 + 2^(2/3)*(1 - x^3)^(1/3))/ 
Sqrt[3]])/2^(1/3)) + Log[1 + x^3]/(2*2^(1/3)) - (3*Log[2^(1/3) - (1 - x^3) 
^(1/3)])/(2*2^(1/3)))/2)/3
 

3.7.41.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 67
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[ 
{q = Rt[(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q), x 
] + (Simp[3/(2*b)   Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1/3)], 
 x] - Simp[3/(2*b*q)   Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] / 
; FreeQ[{a, b, c, d}, x] && PosQ[(b*c - a*d)/b]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 948
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^ 
p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ 
[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
3.7.41.4 Maple [A] (verified)

Time = 8.47 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.22

method result size
pseudoelliptic \(\frac {-2 \arctan \left (\frac {\left (1+2^{\frac {2}{3}} \left (-x^{3}+1\right )^{\frac {1}{3}}\right ) \sqrt {3}}{3}\right ) 2^{\frac {2}{3}} \sqrt {3}\, \left (-x^{3}+1\right )^{\frac {1}{3}}-2 \,2^{\frac {2}{3}} \ln \left (\left (-x^{3}+1\right )^{\frac {1}{3}}-2^{\frac {1}{3}}\right ) \left (-x^{3}+1\right )^{\frac {1}{3}}+2^{\frac {2}{3}} \ln \left (\left (-x^{3}+1\right )^{\frac {2}{3}}+2^{\frac {1}{3}} \left (-x^{3}+1\right )^{\frac {1}{3}}+2^{\frac {2}{3}}\right ) \left (-x^{3}+1\right )^{\frac {1}{3}}+12}{24 \left (-x^{3}+1\right )^{\frac {1}{3}}}\) \(122\)
trager \(-\frac {\left (-x^{3}+1\right )^{\frac {2}{3}}}{2 \left (x^{3}-1\right )}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right ) \ln \left (-\frac {6 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2}+6 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+36 \textit {\_Z}^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{3} x^{3}+45 {\operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2}+6 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+36 \textit {\_Z}^{2}\right )}^{2} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2} x^{3}+2 x^{3} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+15 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2}+6 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+36 \textit {\_Z}^{2}\right ) x^{3}-63 \left (-x^{3}+1\right )^{\frac {1}{3}} \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2}+6 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+36 \textit {\_Z}^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )-21 \left (-x^{3}+1\right )^{\frac {2}{3}}-14 \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )-105 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2}+6 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+36 \textit {\_Z}^{2}\right )}{\left (1+x \right ) \left (x^{2}-x +1\right )}\right )}{12}+\frac {\operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2}+6 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+36 \textit {\_Z}^{2}\right ) \ln \left (\frac {15 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2}+6 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+36 \textit {\_Z}^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{3} x^{3}+72 {\operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2}+6 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+36 \textit {\_Z}^{2}\right )}^{2} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2} x^{3}-15 x^{3} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )-72 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2}+6 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+36 \textit {\_Z}^{2}\right ) x^{3}+126 \left (-x^{3}+1\right )^{\frac {1}{3}} \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2}+6 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+36 \textit {\_Z}^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+42 \left (-x^{3}+1\right )^{\frac {2}{3}}+35 \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+168 \operatorname {RootOf}\left (\operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )^{2}+6 \textit {\_Z} \operatorname {RootOf}\left (\textit {\_Z}^{3}+4\right )+36 \textit {\_Z}^{2}\right )}{\left (1+x \right ) \left (x^{2}-x +1\right )}\right )}{2}\) \(495\)
risch \(\text {Expression too large to display}\) \(770\)

input
int(x^5/(-x^3+1)^(4/3)/(x^3+1),x,method=_RETURNVERBOSE)
 
output
1/24*(-2*arctan(1/3*(1+2^(2/3)*(-x^3+1)^(1/3))*3^(1/2))*2^(2/3)*3^(1/2)*(- 
x^3+1)^(1/3)-2*2^(2/3)*ln((-x^3+1)^(1/3)-2^(1/3))*(-x^3+1)^(1/3)+2^(2/3)*l 
n((-x^3+1)^(2/3)+2^(1/3)*(-x^3+1)^(1/3)+2^(2/3))*(-x^3+1)^(1/3)+12)/(-x^3+ 
1)^(1/3)
 
3.7.41.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 148 vs. \(2 (73) = 146\).

Time = 0.33 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.48 \[ \int \frac {x^5}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=-\frac {2 \, \sqrt {6} 2^{\frac {1}{6}} \left (-1\right )^{\frac {1}{3}} {\left (x^{3} - 1\right )} \arctan \left (\frac {1}{6} \cdot 2^{\frac {1}{6}} {\left (2 \, \sqrt {6} \left (-1\right )^{\frac {1}{3}} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} - \sqrt {6} 2^{\frac {1}{3}}\right )}\right ) + 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (x^{3} - 1\right )} \log \left (2^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} - 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} + {\left (-x^{3} + 1\right )}^{\frac {2}{3}}\right ) - 2 \cdot 2^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (x^{3} - 1\right )} \log \left (-2^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} + {\left (-x^{3} + 1\right )}^{\frac {1}{3}}\right ) + 12 \, {\left (-x^{3} + 1\right )}^{\frac {2}{3}}}{24 \, {\left (x^{3} - 1\right )}} \]

input
integrate(x^5/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="fricas")
 
output
-1/24*(2*sqrt(6)*2^(1/6)*(-1)^(1/3)*(x^3 - 1)*arctan(1/6*2^(1/6)*(2*sqrt(6 
)*(-1)^(1/3)*(-x^3 + 1)^(1/3) - sqrt(6)*2^(1/3))) + 2^(2/3)*(-1)^(1/3)*(x^ 
3 - 1)*log(2^(1/3)*(-1)^(2/3)*(-x^3 + 1)^(1/3) - 2^(2/3)*(-1)^(1/3) + (-x^ 
3 + 1)^(2/3)) - 2*2^(2/3)*(-1)^(1/3)*(x^3 - 1)*log(-2^(1/3)*(-1)^(2/3) + ( 
-x^3 + 1)^(1/3)) + 12*(-x^3 + 1)^(2/3))/(x^3 - 1)
 
3.7.41.6 Sympy [F]

\[ \int \frac {x^5}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=\int \frac {x^{5}}{\left (- \left (x - 1\right ) \left (x^{2} + x + 1\right )\right )^{\frac {4}{3}} \left (x + 1\right ) \left (x^{2} - x + 1\right )}\, dx \]

input
integrate(x**5/(-x**3+1)**(4/3)/(x**3+1),x)
 
output
Integral(x**5/((-(x - 1)*(x**2 + x + 1))**(4/3)*(x + 1)*(x**2 - x + 1)), x 
)
 
3.7.41.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.97 \[ \int \frac {x^5}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=-\frac {1}{12} \, \sqrt {3} 2^{\frac {2}{3}} \arctan \left (\frac {1}{6} \, \sqrt {3} 2^{\frac {2}{3}} {\left (2^{\frac {1}{3}} + 2 \, {\left (-x^{3} + 1\right )}^{\frac {1}{3}}\right )}\right ) + \frac {1}{24} \cdot 2^{\frac {2}{3}} \log \left (2^{\frac {2}{3}} + 2^{\frac {1}{3}} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} + {\left (-x^{3} + 1\right )}^{\frac {2}{3}}\right ) - \frac {1}{12} \cdot 2^{\frac {2}{3}} \log \left (-2^{\frac {1}{3}} + {\left (-x^{3} + 1\right )}^{\frac {1}{3}}\right ) + \frac {1}{2 \, {\left (-x^{3} + 1\right )}^{\frac {1}{3}}} \]

input
integrate(x^5/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="maxima")
 
output
-1/12*sqrt(3)*2^(2/3)*arctan(1/6*sqrt(3)*2^(2/3)*(2^(1/3) + 2*(-x^3 + 1)^( 
1/3))) + 1/24*2^(2/3)*log(2^(2/3) + 2^(1/3)*(-x^3 + 1)^(1/3) + (-x^3 + 1)^ 
(2/3)) - 1/12*2^(2/3)*log(-2^(1/3) + (-x^3 + 1)^(1/3)) + 1/2/(-x^3 + 1)^(1 
/3)
 
3.7.41.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.98 \[ \int \frac {x^5}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=-\frac {1}{12} \, \sqrt {3} 2^{\frac {2}{3}} \arctan \left (\frac {1}{6} \, \sqrt {3} 2^{\frac {2}{3}} {\left (2^{\frac {1}{3}} + 2 \, {\left (-x^{3} + 1\right )}^{\frac {1}{3}}\right )}\right ) + \frac {1}{24} \cdot 2^{\frac {2}{3}} \log \left (2^{\frac {2}{3}} + 2^{\frac {1}{3}} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} + {\left (-x^{3} + 1\right )}^{\frac {2}{3}}\right ) - \frac {1}{12} \cdot 2^{\frac {2}{3}} \log \left ({\left | -2^{\frac {1}{3}} + {\left (-x^{3} + 1\right )}^{\frac {1}{3}} \right |}\right ) + \frac {1}{2 \, {\left (-x^{3} + 1\right )}^{\frac {1}{3}}} \]

input
integrate(x^5/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="giac")
 
output
-1/12*sqrt(3)*2^(2/3)*arctan(1/6*sqrt(3)*2^(2/3)*(2^(1/3) + 2*(-x^3 + 1)^( 
1/3))) + 1/24*2^(2/3)*log(2^(2/3) + 2^(1/3)*(-x^3 + 1)^(1/3) + (-x^3 + 1)^ 
(2/3)) - 1/12*2^(2/3)*log(abs(-2^(1/3) + (-x^3 + 1)^(1/3))) + 1/2/(-x^3 + 
1)^(1/3)
 
3.7.41.9 Mupad [B] (verification not implemented)

Time = 8.43 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.17 \[ \int \frac {x^5}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=\frac {1}{2\,{\left (1-x^3\right )}^{1/3}}-\frac {2^{2/3}\,\ln \left (\frac {{\left (1-x^3\right )}^{1/3}}{4}-\frac {2^{1/3}}{4}\right )}{12}-\frac {2^{2/3}\,\ln \left (\frac {{\left (1-x^3\right )}^{1/3}}{4}-\frac {2^{1/3}\,{\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{16}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{24}+\frac {2^{2/3}\,\ln \left (\frac {{\left (1-x^3\right )}^{1/3}}{4}-\frac {2^{1/3}\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{16}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{24} \]

input
int(x^5/((1 - x^3)^(4/3)*(x^3 + 1)),x)
 
output
1/(2*(1 - x^3)^(1/3)) - (2^(2/3)*log((1 - x^3)^(1/3)/4 - 2^(1/3)/4))/12 - 
(2^(2/3)*log((1 - x^3)^(1/3)/4 - (2^(1/3)*(3^(1/2)*1i - 1)^2)/16)*(3^(1/2) 
*1i - 1))/24 + (2^(2/3)*log((1 - x^3)^(1/3)/4 - (2^(1/3)*(3^(1/2)*1i + 1)^ 
2)/16)*(3^(1/2)*1i + 1))/24